DC FieldValueLanguage
dc.contributor.authorŽivaljević, Radeen_US
dc.date.accessioned2020-04-12T18:04:00Z-
dc.date.available2020-04-12T18:04:00Z-
dc.date.issued1987-01-01-
dc.identifier.issn0030-8730en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/316-
dc.description.abstractIn this note we investigate a cohomology theory H#(X, G), defined by M. C. McCord, which is dual to a homology theory based on hyperfinite chains of miscrosimplexes. We prove that if X is a locally contraction, paracompact space then H#(X, G) ≃ Hč#(X, Hom(*Z, G)) where Hč# is the Čech theory. Nonstandard analysis, particularly the Saturation Principle, is used in this proof in essential way to construct a fine resolution of the constant sheaf X × Hom(*Z, Z). This gives a partial answer to a question of McCord. Subsequently, we prove a proposition from which it is deduced that Hom(*Z, Z) = {0} i.e. H#(X, Z) = {0} if X is paracompact and locally contractible. At the end we briefly discuss a related cohomology theory which is obtained by application of the internal (rather than external) Hom(·, G) functor.en
dc.publisherMPS-
dc.relation.ispartofPacific Journal of Mathematicsen
dc.titleOn a cohomology theory based on hyperfinite sums of microsimplexesen_US
dc.typeArticleen_US
dc.identifier.doi10.2140/pjm.1987.128.201-
dc.identifier.scopus2-s2.0-84972571280-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage201en
dc.relation.lastpage208en
dc.relation.issue1en
dc.relation.volume128en
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

SCOPUSTM   
Citations

4
checked on Dec 26, 2024

Page view(s)

15
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.