DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vučić, Aleksandar | en |
dc.contributor.author | Živaljević, Rade | en |
dc.date.accessioned | 2020-04-12T18:03:59Z | - |
dc.date.available | 2020-04-12T18:03:59Z | - |
dc.date.issued | 1993-12-01 | en |
dc.identifier.issn | 0179-5376 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/310 | - |
dc.description.abstract | Let S(q, d) be the maximal number v such that, for every general position linear map h: Δ(q-1)(d+1) →Rd, there exist at least v different collections {Δt1, ..., Δtq} of disjoint faces of Δ(q-1)(d+1) with the property that f(Δt1) ∩ ... ∩f(Δtq) ≠ Ø. Sierksma's conjecture is that S(q, d)=((q-1)!)d. The following lower bound (Theorem 1) is proved assuming that q is a prime number: {Mathematical expression} Using the same technique we obtain (Theorem 2) a lower bound for the number of different splittings of a "generic" necklace. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Discrete and Computational Geometry | en |
dc.title | Note on a conjecture of sierksma | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/BF02189327 | en |
dc.identifier.scopus | 2-s2.0-21144472253 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 339 | en |
dc.relation.lastpage | 349 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 9 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0001-9801-8839 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.