DC FieldValueLanguage
dc.contributor.authorVučić, Aleksandaren
dc.contributor.authorŽivaljević, Radeen
dc.date.accessioned2020-04-12T18:03:59Z-
dc.date.available2020-04-12T18:03:59Z-
dc.date.issued1993-12-01en
dc.identifier.issn0179-5376en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/310-
dc.description.abstractLet S(q, d) be the maximal number v such that, for every general position linear map h: Δ(q-1)(d+1) →Rd, there exist at least v different collections {Δt1, ..., Δtq} of disjoint faces of Δ(q-1)(d+1) with the property that f(Δt1) ∩ ... ∩f(Δtq) ≠ Ø. Sierksma's conjecture is that S(q, d)=((q-1)!)d. The following lower bound (Theorem 1) is proved assuming that q is a prime number: {Mathematical expression} Using the same technique we obtain (Theorem 2) a lower bound for the number of different splittings of a "generic" necklace.en
dc.publisherSpringer Link-
dc.relation.ispartofDiscrete and Computational Geometryen
dc.titleNote on a conjecture of sierksmaen
dc.typeArticleen
dc.identifier.doi10.1007/BF02189327en
dc.identifier.scopus2-s2.0-21144472253en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage339en
dc.relation.lastpage349en
dc.relation.issue1en
dc.relation.volume9en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

SCOPUSTM   
Citations

19
checked on Jun 11, 2024

Page view(s)

40
checked on May 10, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.