DC FieldValueLanguage
dc.contributor.authorBlagojević, Pavleen
dc.contributor.authorGrujić, Vladimiren
dc.contributor.authorŽivaljević, Radeen
dc.date.accessioned2020-04-12T18:03:59Z-
dc.date.available2020-04-12T18:03:59Z-
dc.date.issued2003-01-01en
dc.identifier.issn0021-2172en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/304-
dc.description.abstractWe study some of the combinatorial structures related to the signature of G-symmetric products of (open) surfaces SPGm(M) = M m/G where G ⊂ Sm. The attention is focused on the question, what information about a surface M can be recovered from a symmetric product SPn(M). The problem is motivated in part by the study of locally Euclidean topological commutative (m + k, m)-groups, [16]. Emphasizing a combinatorial point of view we express the signature Sign(SPGm(M)) in terms of the cycle index Z(G; x̄) of G, a polynomial which originally appeared in Pólya enumeration theory of graphs, trees, chemical structures etc. The computations are used to show that there exist punctured Riemann surfaces Mg,k, Mg,k, such that the manifolds SPm(Mg,k) and SPm(Mg,k) are often not homeomorphic, although they always have the same homotopy type provided 2g + k = 2g + k and k, k ≥ 1.en
dc.publisherSpringer Link-
dc.relationGeometry and Topology of Manifolds and Integrable Dynamical Systems-
dc.relation.ispartofIsrael Journal of Mathematicsen
dc.titleSymmetric products of surfaces and the cycle indexen
dc.typeArticleen
dc.identifier.doi10.1007/BF02783419en
dc.identifier.scopus2-s2.0-0442307394en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage61en
dc.relation.lastpage72en
dc.relation.volume138en
dc.description.rankM22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-3649-9897-
crisitem.author.orcid0000-0001-9801-8839-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/projects/1643e.htm-
Show simple item record

SCOPUSTM   
Citations

3
checked on Apr 1, 2025

Page view(s)

20
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.