DC FieldValueLanguage
dc.contributor.authorMarković, Zoran-
dc.contributor.authorOgnjanović, Zoran-
dc.contributor.authorRašković, Miodrag-
dc.date.accessioned2020-06-15T15:23:18Z-
dc.date.available2020-06-15T15:23:18Z-
dc.date.issued2002-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/3014-
dc.description.abstractWe introduce a probabilistic extension of propositional intuitionistic logic. The logic allows making statements such as P≥sA, with the intended meaning "the probability of truthfulness of A is greater than or equal to s. We describe the corresponding class of models, which are Kripke models with a naturally arrising notion of probability, and give a sound and complete infinitary axiomatic system. We prove that the logic is decidable.-
dc.publisherICEST-
dc.relationMethods of Mathematical Logic for Decision Support in Real Life Situations-
dc.subjectprobabilistic logic | intuitionistic logic | completeness | decidability-
dc.titleA probabilistic logic based on propositional intuitionistic logic-
dc.typeConference Paper-
dc.relation.conference37th International scientific conference on information, communication and energy systems and technologies, ISECST 2002, 1-4 October 2002, Niš, Jugoslavia-
dc.identifier.urlhttp://rcvt.tu-sofia.bg/WSI.14.pdf-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage784-
dc.relation.lastpage787-
dc.description.rankM33-
item.grantfulltextnone-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2508-6480-
Show simple item record

Page view(s)

24
checked on Dec 4, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.