DC FieldValueLanguage
dc.contributor.authorMani-Levitska, Peteren
dc.contributor.authorVrećica, Sinišaen
dc.contributor.authorŽivaljević, Radeen
dc.date.accessioned2020-04-12T18:03:58Z-
dc.date.available2020-04-12T18:03:58Z-
dc.date.issued2006-12-01en
dc.identifier.issn0001-8708en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/300-
dc.description.abstractAn old problem in combinatorial geometry is to determine when one or more measurable sets in R d admit an equipartition by a collection of k hyperplanes [B. Grünbaum, Partitions of mass-distributions and convex bodies by hyperplanes, Pacific J. Math. 10 (1960) 1257-1261]. A related topological problem is the question of (non)existence of a map f : (S d ) k → S (U), equivariant with respect to the Weyl group W k = B k : = (Z / 2) ⊕ k ⋊ S k , where U is a representation of W k and S (U) ⊂ U the corresponding unit sphere. We develop general methods for computing topological obstructions for the existence of such equivariant maps. Among the new results is the well-known open case of 5 measures and 2 hyperplanes in R 8 [E.A. Ramos, Equipartitions of mass distributions by hyperplanes, Discrete Comput. Geom. 15 (1996) 147-167]. The obstruction in this case is identified as the element 2 X a b ∈ H 1 (D 8 ; Z) ≅ Z / 4, where X a b is a generator, which explains why this result cannot be obtained by the parity count formulas of Ramos [loc. cit.] or the methods based on either Stiefel-Whitney classes or ideal valued cohomological index theory [E. Fadell, S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynam. Systems 8 * (1988) 73-85].en
dc.publisherElsevier-
dc.relationSerbian Ministry of Science, Grant no. 144026-
dc.relation.ispartofAdvances in Mathematicsen
dc.subjectCohomological index theory | Cyclic words | Equipartitions of masses | Equivariant maps | Obstruction theoryen
dc.titleTopology and combinatorics of partitions of masses by hyperplanesen
dc.typeArticleen
dc.identifier.doi10.1016/j.aim.2005.11.013en
dc.identifier.scopus2-s2.0-33748912237en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage266en
dc.relation.lastpage296en
dc.relation.issue1en
dc.relation.volume207en
dc.description.rankM21a-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

SCOPUSTM   
Citations

24
checked on Dec 27, 2024

Page view(s)

33
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.