DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mani-Levitska, Peter | en |
dc.contributor.author | Vrećica, Siniša | en |
dc.contributor.author | Živaljević, Rade | en |
dc.date.accessioned | 2020-04-12T18:03:58Z | - |
dc.date.available | 2020-04-12T18:03:58Z | - |
dc.date.issued | 2006-12-01 | en |
dc.identifier.issn | 0001-8708 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/300 | - |
dc.description.abstract | An old problem in combinatorial geometry is to determine when one or more measurable sets in R d admit an equipartition by a collection of k hyperplanes [B. Grünbaum, Partitions of mass-distributions and convex bodies by hyperplanes, Pacific J. Math. 10 (1960) 1257-1261]. A related topological problem is the question of (non)existence of a map f : (S d ) k → S (U), equivariant with respect to the Weyl group W k = B k : = (Z / 2) ⊕ k ⋊ S k , where U is a representation of W k and S (U) ⊂ U the corresponding unit sphere. We develop general methods for computing topological obstructions for the existence of such equivariant maps. Among the new results is the well-known open case of 5 measures and 2 hyperplanes in R 8 [E.A. Ramos, Equipartitions of mass distributions by hyperplanes, Discrete Comput. Geom. 15 (1996) 147-167]. The obstruction in this case is identified as the element 2 X a b ∈ H 1 (D 8 ; Z) ≅ Z / 4, where X a b is a generator, which explains why this result cannot be obtained by the parity count formulas of Ramos [loc. cit.] or the methods based on either Stiefel-Whitney classes or ideal valued cohomological index theory [E. Fadell, S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynam. Systems 8 * (1988) 73-85]. | en |
dc.publisher | Elsevier | - |
dc.relation | Serbian Ministry of Science, Grant no. 144026 | - |
dc.relation.ispartof | Advances in Mathematics | en |
dc.subject | Cohomological index theory | Cyclic words | Equipartitions of masses | Equivariant maps | Obstruction theory | en |
dc.title | Topology and combinatorics of partitions of masses by hyperplanes | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.aim.2005.11.013 | en |
dc.identifier.scopus | 2-s2.0-33748912237 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 266 | en |
dc.relation.lastpage | 296 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 207 | en |
dc.description.rank | M21a | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0001-9801-8839 | - |
SCOPUSTM
Citations
24
checked on Dec 27, 2024
Page view(s)
33
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.