DC FieldValueLanguage
dc.contributor.authorBlagojević, Pavleen_US
dc.contributor.authorHarrison, Michaelen_US
dc.contributor.authorTabachnikov, Sergeen_US
dc.contributor.authorZiegler, Günteren_US
dc.date.accessioned2020-06-15T11:20:34Z-
dc.date.available2020-06-15T11:20:34Z-
dc.date.issued2020-01-01-
dc.identifier.issn1815-0659-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2980-
dc.description.abstractWe provide lower bounds on the number of periodic Finsler billiard trajectories inside a quadratically convex smooth closed hypersurface M in a d-dimensional Finsler space with possibly irreversible Finsler metric. An example of such a system is a billiard in a sufficiently weak magnetic field. The r-periodic Finsler billiard trajectories correspond to r-gons inscribed in M and having extremal Finsler length. The cyclic group Zr acts on these extremal polygons, and one counts the Zr-orbits. Using Morse and Lusternik–Schnirelmann theories, we prove that if r ≥ 3 is prime, then the number of r-periodic Finsler billiard trajectories is not less than (r −1)(d−2)+1. We also give stronger lower bounds when M is in general position. The problem of estimating the number of periodic billiard trajectories from below goes back to Birkhoff. Our work extends to the Finsler setting the results previously obtained for Euclidean billiards by Babenko, Farber, Tabachnikov, and Karasev.en_US
dc.publisherEuropean Mathematical Information Serviceen_US
dc.relationCollaborative Research Center TRR 109 "Dis-cretization in Geometry and Dynamics"-
dc.relationMethods of Functional and Harmonic Analysis and PDE with Singularities-
dc.relationTopics in Geometrical Dynamics and Applications-
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)en_US
dc.subjectFinsler manifolds | Magnetic billiards | Mathematical billiards | Morse and Lusternik | Schnirelmann theories | Unlabeled cyclic configuration spaces; Mathematics - Dynamical Systems; Mathematics - Dynamical Systems; Mathematics - Differential Geometry; Mathematics - Geometric Topologyen_US
dc.titleCounting periodic trajectories of finsler billiardsen_US
dc.typeArticleen_US
dc.identifier.doi10.3842/SIGMA.2020.022-
dc.identifier.scopus2-s2.0-85085891461-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage022-
dc.relation.volume16-
dc.description.rankM22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-3649-9897-
crisitem.project.funderMESTD-
crisitem.project.funderNSF-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174024-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/null/1510055-
Show simple item record

SCOPUSTM   
Citations

2
checked on Apr 3, 2025

Page view(s)

23
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.