DC FieldValueLanguage
dc.contributor.authorŽivaljević, Radeen
dc.date.accessioned2020-04-12T18:03:58Z-
dc.date.available2020-04-12T18:03:58Z-
dc.date.issued2009-01-01en
dc.identifier.issn0179-5376en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/297-
dc.description.abstractThis paper lays the foundation for a theory of combinatorial groupoids that allows us to use concepts like "holonomy", "parallel transport", "bundles", "combinatorial curvature", etc. in the context of simplicial (polyhedral) complexes, posets, graphs, polytopes and other combinatorial objects. We introduce a new, holonomy-type invariant for cubical complexes, leading to a combinatorial "Theorema Egregium" for cubical complexes that are non-embeddable into cubical lattices. Parallel transport of Hom-complexes and maps is used as a tool to extend Babson-Kozlov-Lovász graph coloring results to more general statements about nondegenerate maps (colorings) of simplicial complexes and graphs.en
dc.publisherSpringer Link-
dc.relationSerbian Ministry of Science and Technology, Grants no. 144014 and 144026-
dc.relation.ispartofDiscrete and Computational Geometryen
dc.subjectCombinatorial groupoids | Cubical complexes | Discrete differential geometry | Lovász conjectureen
dc.titleCombinatorial groupoids, cubical complexes, and the lovász conjectureen
dc.typeArticleen
dc.identifier.doi10.1007/s00454-008-9062-1en
dc.identifier.scopus2-s2.0-57849098243en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage135en
dc.relation.lastpage161en
dc.relation.issue1en
dc.relation.volume41en
dc.description.rankM21-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

SCOPUSTM   
Citations

10
checked on Jul 21, 2024

Page view(s)

29
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.