DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đorđević, Bogdan | en |
dc.contributor.author | Dinčić, Nebojša | en |
dc.date.accessioned | 2020-06-11T10:54:33Z | - |
dc.date.available | 2020-06-11T10:54:33Z | - |
dc.date.issued | 2018-10-01 | en |
dc.identifier.issn | 0378-620X | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2940 | - |
dc.description.abstract | We solve the operator equation AX- XB= C, where A and B are closed operators whose point spectra intersect. We obtain sufficient conditions for the existence of solutions and provide a way of constructing them. As a corollary, we obtain a result that gives us new insight on the matrix equations of the form AX= XB, where A and B share non-zero eigenvalues. Afterwards, we illustrate our results on Sturm–Liouville operators. | en |
dc.publisher | Springer Link | - |
dc.relation | Functional analysis, stochastic analysis and applications | - |
dc.relation.ispartof | Integral Equations and Operator Theory | en |
dc.subject | Closed operator | Sturm–Liouville problem | Sylvester equation | en |
dc.title | Solving the Operator Equation AX-XB=C with Closed A and B | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s00020-018-2473-3 | en |
dc.identifier.scopus | 2-s2.0-85050286785 | en |
dc.relation.issue | 5 | en |
dc.relation.volume | 90 | en |
dc.description.rank | M22 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-6751-6867 | - |
crisitem.project.funder | NIH | - |
crisitem.project.fundingProgram | NATIONAL CANCER INSTITUTE | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/NIH/NATIONAL CANCER INSTITUTE/1R43CA174007-01 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.