DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đorđević, Bogdan | en |
dc.contributor.author | Dinčić, Nebojša | en |
dc.date.accessioned | 2020-06-11T10:54:33Z | - |
dc.date.available | 2020-06-11T10:54:33Z | - |
dc.date.issued | 2018-10-01 | en |
dc.identifier.issn | 0378-620X | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2940 | - |
dc.description.abstract | We solve the operator equation AX- XB= C, where A and B are closed operators whose point spectra intersect. We obtain sufficient conditions for the existence of solutions and provide a way of constructing them. As a corollary, we obtain a result that gives us new insight on the matrix equations of the form AX= XB, where A and B share non-zero eigenvalues. Afterwards, we illustrate our results on Sturm–Liouville operators. | en |
dc.publisher | Springer Link | - |
dc.relation | Functional analysis, stochastic analysis and applications | - |
dc.relation.ispartof | Integral Equations and Operator Theory | en |
dc.subject | Closed operator | Sturm–Liouville problem | Sylvester equation | en |
dc.title | Solving the Operator Equation AX-XB=C with Closed A and B | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s00020-018-2473-3 | en |
dc.identifier.scopus | 2-s2.0-85050286785 | en |
dc.relation.issue | 5 | en |
dc.relation.volume | 90 | en |
dc.description.rank | M22 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.project.funder | NIH | - |
crisitem.project.fundingProgram | NATIONAL CANCER INSTITUTE | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/NIH/NATIONAL CANCER INSTITUTE/1R43CA174007-01 | - |
crisitem.author.orcid | 0000-0002-6751-6867 | - |
SCOPUSTM
Citations
6
checked on Dec 20, 2024
Page view(s)
25
checked on Dec 22, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.