DC Field | Value | Language |
---|---|---|
dc.contributor.author | Živaljević, Rade | en |
dc.date.accessioned | 2020-04-12T18:03:57Z | - |
dc.date.available | 2020-04-12T18:03:57Z | - |
dc.date.issued | 2011-01-01 | en |
dc.identifier.issn | 1451-4966 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/293 | - |
dc.description.abstract | Given a continuous map f: M → N between oriented manifolds of the same dimension, the associated degree deg(f) is an integer which evaluates the number of times the domain manifold M “wraps around” the range manifold N under the mapping f. The mapping degree is met at almost every corner of mathematics. Some of its avatars, pseudonyms, or close relatives are “winding number”, “index of a vector field”, “multiplicity of a zero”, “Milnor number of a singularity”, “degree of a variety”, “incidence numbers of cells in a CW-complex”, etc. We review some examples and applications involving this important invariant. One of emerging guiding principles, useful for a mathematical student or teacher, is that the study of mathematical concepts which transcend the boundaries between different mathematical disciplines should receive a special attention in mathematical (self)education. | en |
dc.publisher | Društvo Matematičara Srbije | - |
dc.relation.ispartof | Teaching of Mathematics | en |
dc.subject | Mapping degree | Winding number | en |
dc.title | Let’s get acquainted with mapping degree! | en |
dc.type | Article | en |
dc.identifier.scopus | 2-s2.0-85075087318 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 119 | en |
dc.relation.lastpage | 136 | en |
dc.relation.issue | 2 | en |
dc.relation.volume | 14 | en |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0001-9801-8839 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.