DC FieldValueLanguage
dc.contributor.authorĐorđević, Bogdanen
dc.contributor.authorDinčić, Nebojšaen
dc.date.accessioned2020-06-11T10:54:33Z-
dc.date.available2020-06-11T10:54:33Z-
dc.date.issued2019-01-01en
dc.identifier.issn0354-5180en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2939-
dc.description.abstractIn this paper we solve Sylvester matrix equation with infinitely-many solutions and conduct their classification. If the conditions for their existence are not met, we provide a way for their approximation by least-squares minimal-norm method.en
dc.publisherFaculty of Sciences and Mathematics, University of Niš-
dc.relationFunctional analysis, stochastic analysis and applications-
dc.relation.ispartofFilomaten
dc.subjectEigenvalues and eigenvectors | Frobenius norm | Jordan normal form | Least-squares solution | Matrix approximations | Matrix spectrum | Minimal-norm solution | Sylvester equationen
dc.titleClassification and approximation of solutions to sylvester matrix equationen
dc.typeArticleen
dc.identifier.doi10.2298/FIL1913261Den
dc.identifier.scopus2-s2.0-85077682234en
dc.relation.firstpage4261en
dc.relation.lastpage4280en
dc.relation.issue13en
dc.relation.volume33en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.funderNIH-
crisitem.project.fundingProgramNATIONAL CANCER INSTITUTE-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NIH/NATIONAL CANCER INSTITUTE/1R43CA174007-01-
crisitem.author.orcid0000-0002-6751-6867-
Show simple item record

SCOPUSTM   
Citations

11
checked on Dec 20, 2024

Page view(s)

31
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.