DC FieldValueLanguage
dc.contributor.authorŽivaljević, Radeen
dc.date.accessioned2020-04-12T18:03:57Z-
dc.date.available2020-04-12T18:03:57Z-
dc.date.issued2013-01-01en
dc.identifier.issn0012-365Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/289-
dc.description.abstractWe give an elementary proof of a formula expressing the rotation number of a cyclic unimodular sequence L = u1u2 . . . ud of lattice vectors ui2 in terms of arithmetically defined local quantities. The formula has been originally derived by A. Higashitani and M. Masuda [A. Higashitani, M. Masuda, Lattice multi-polygons, arXiv:1204.0088v2 [math.CO], [v2] Apr 2012; [v3] Dec 2012] with the aid of the Riemann-Roch formula applied in the context of toric topology. These authors also demonstrated that a generalized version of the 'Twelve-point theorem' and a generalized Pick's formula are among the consequences or relatives of their result. Our approach emphasizes the role of 'discrete curvature invariants' μ(a, b, c), where {a, b} and {b, c} are bases of 2, as fundamental discrete invariants of modular lattice geometry.en
dc.publisherElsevier-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relationTopology, geometry and global analysis on manifolds and discrete structures-
dc.relation.ispartofDiscrete Mathematicsen
dc.subjectLattice points | Rotation number | Toric topology | Unimodular sequenceen
dc.titleRotation number of a unimodular cycle: An elementary approachen
dc.typeArticleen
dc.identifier.doi10.1016/j.disc.2013.06.003en
dc.identifier.scopus2-s2.0-84885172611en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage2253en
dc.relation.lastpage2261en
dc.relation.issue20en
dc.relation.volume313en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.funderMESTD-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174034-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 26, 2024

Page view(s)

23
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.