DC FieldValueLanguage
dc.contributor.authorŽivaljević, Radeen
dc.date.accessioned2020-04-12T18:03:56Z-
dc.date.available2020-04-12T18:03:56Z-
dc.date.issued2015-01-01en
dc.identifier.issn0925-7721en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/286-
dc.description.abstractIllumination complexes are examples of 'flat polyhedral complexes' which arise if several copies of a convex polyhedron (convex body) Q are glued together along some of their common faces (closed convex subsets of their boundaries). A particularly nice example arises if Q is a Δ-zonotope (generalized rhombic dodecahedron), known also as the dual of the difference body Δ-Δ of a simplex Δ, or the dual of the convex hull of the root system An. We demonstrate that the illumination complexes and their relatives can be used as 'configuration spaces', leading to new 'fair division theorems'. Among the central new results is the 'polyhedral curtain theorem' (Theorem 3) which is a relative of both the 'ham sandwich theorem' and the 'splitting necklaces theorem'.en
dc.publisherElsevier-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relationTopology, geometry and global analysis on manifolds and discrete structures-
dc.relation.ispartofComputational Geometry: Theory and Applicationsen
dc.subjectFair division | Illumination complexes | Splitting necklaces | Zonotopeen
dc.titleIllumination complexes, Δ-zonotopes, and the polyhedral curtain theoremen
dc.typeArticleen
dc.identifier.doi10.1016/j.comgeo.2014.10.003en
dc.identifier.scopus2-s2.0-84908255040en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage225en
dc.relation.lastpage236en
dc.relation.issue3en
dc.relation.volume48en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.funderMESTD-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174034-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

SCOPUSTM   
Citations

4
checked on Dec 26, 2024

Page view(s)

20
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.