DC FieldValueLanguage
dc.contributor.authorDizdarević, Manuela Muzikaen
dc.contributor.authorTimotijević, Marinkoen
dc.contributor.authorŽivaljević, Radeen
dc.date.accessioned2020-04-12T18:03:56Z-
dc.date.available2020-04-12T18:03:56Z-
dc.date.issued2016-01-01en
dc.identifier.issn0350-1302en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/284-
dc.description.abstractConway and Lagarias observed that a triangular region T(m) in a hexagonal lattice admits a signed tiling by three-in-line polyominoes (tribones) if and only if ∈ 2 {9d-1, 9d}d∈N. We apply the theory of Gröbner bases over integers to show that T(m) admits a signed tiling by n-in-line polyominoes (n-bones) if and only if m ∈ {dn2 - 1, dn2}d∈N. Explicit description of the Gröbner basis allows us to calculate the 'Gröbner discrete volume' of a lattice region by applying the division algorithm to its 'Newton polynomial'. Among immediate consequences is a description of the tile homology group for the n-in-line polyomino.en
dc.publisherMathematical Institute of the SASA-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relationTopology, geometry and global analysis on manifolds and discrete structures-
dc.relation.ispartofPublications de l'Institut Mathematiqueen
dc.subjectGröbner bases | Signed polyomino tilingsen
dc.titleSigned polyomino tilings by n-in-line polyominoes and Gröbner basesen
dc.typeArticleen
dc.identifier.doi10.2298/PIM1613031Men
dc.identifier.scopus2-s2.0-84971484523en
dc.relation.firstpage31en
dc.relation.lastpage42en
dc.relation.issue113en
dc.relation.volume99en
dc.description.rankM24-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.funderMESTD-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174034-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 26, 2024

Page view(s)

27
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.