DC FieldValueLanguage
dc.contributor.authorSlivková, Annaen_US
dc.contributor.authorTepavčević, Andrejaen_US
dc.contributor.authorŠešelja, Branimiren_US
dc.date.accessioned2020-06-06T15:31:43Z-
dc.date.available2020-06-06T15:31:43Z-
dc.date.issued2018-01-01-
dc.identifier.issn1787-2405-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2832-
dc.description.abstractAs an improvement of existing relationships among collections of sets, closure operators and posets, a particular, so called sharp partial closure operator (SPCO) is introduced. It is proved that there is always a unique SPCO corresponding to a given partial closure system. Moreover, an SPCO has the greatest domain among all partial operators corresponding to a given system. If it is a function, an SCPO is a classical closure operator. Dealing with partial closure systems, we introduce principal ones, corresponding to principal ideals of a poset and accordingly, we define principal SPCO's. Finally, we prove a representation theorem for posets in terms of principal SPCO's and principal partial closure systems.en_US
dc.publisherMiskolc University Pressen_US
dc.relationDevelopment of methods of computation and information processing: theory and applicationsen_US
dc.relation.ispartofMiskolc Mathematical Notes-
dc.subjectpartial closure operator | partial closure system | centralized systemen_US
dc.titleSharp partial closure operatoren_US
dc.typeArticleen_US
dc.identifier.doi10.18514/MMN.2018.1972-
dc.relation.grantno174013en_US
dc.relation.firstpage569-
dc.relation.lastpage579-
dc.relation.issue1-
dc.relation.volume19-
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.funderMESTD-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174013-
crisitem.author.orcid0000-0002-5716-604X-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 25, 2024

Page view(s)

24
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.