DC FieldValueLanguage
dc.contributor.authorAnđelić, Milicaen_US
dc.contributor.authorDu, Zhibinen_US
dc.contributor.authorda Fonseca, Carlosen_US
dc.contributor.authorSimić, Slobodanen_US
dc.date.accessioned2020-06-05T11:06:00Z-
dc.date.available2020-06-05T11:06:00Z-
dc.date.issued2020-04-23-
dc.identifier.issn0011-4642-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2801-
dc.description.abstractA graph is called a chain graph if it is bipartite and the neighbourhoods of the vertices in each colour class form a chain with respect to inclusion. In this paper we give an explicit formula for the characteristic polynomial of any chain graph and we show that it can be expressed using the determinant of a particular tridiagonal matrix. Then this fact is applied to show that in a certain interval a chain graph does not have any nonzero eigenvalue. A similar result is provided for threshold graphs.en_US
dc.publisherInstitute of Mathematics of the Czech Academy of Sciences; Springer Linken_US
dc.relation.ispartofCzechoslovak Mathematical Journalen_US
dc.subject05C50 | chain graph | eigenvalue-free interval | threshold graph | tridiagonal matrixen_US
dc.titleTridiagonal Matrices and Spectral Properties of Some Graph Classesen_US
dc.typeArticleen_US
dc.identifier.doi10.21136/CMJ.2020.0182-19-
dc.identifier.scopus2-s2.0-85084531057-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

15
checked on Nov 23, 2024

Page view(s)

21
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.