DC FieldValueLanguage
dc.contributor.authorBaralić, Đorđeen
dc.contributor.authorŽivaljević, Radeen
dc.date.accessioned2020-04-12T18:03:56Z-
dc.date.available2020-04-12T18:03:56Z-
dc.date.issued2017-02-01en
dc.identifier.issn0097-3165en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/279-
dc.description.abstractFollowing and developing ideas of R. Karasev (2014) [10], we extend the Lebesgue theorem (on covers of cubes) and the Knaster–Kuratowski–Mazurkiewicz theorem (on covers of simplices) to different classes of convex polytopes (colored in the sense of M. Joswig). We also show that the n-dimensional Hex theorem admits a generalization where the n-dimensional cube is replaced by a n-colorable simple polytope. The use of specially designed quasitoric manifolds, with easily computable cohomology rings and the cohomological cup-length, offers a great flexibility and versatility in applying the general method.en
dc.publisherElsevier-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relation.ispartofJournal of Combinatorial Theory. Series Aen
dc.subjectCup-length | KKM theorem | Lebesgue theorem | Quasitoric manifolds | Simple polytopesen
dc.titleColorful versions of the Lebesgue, KKM, and Hex theoremen
dc.typeArticleen
dc.identifier.doi10.1016/j.jcta.2016.10.002en
dc.identifier.scopus2-s2.0-84992520624en
dc.relation.firstpage295en
dc.relation.lastpage311en
dc.relation.volume146en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2836-7958-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 23, 2024

Page view(s)

19
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.