DC FieldValueLanguage
dc.contributor.authorIlić Stepić, Angelinaen_US
dc.date.accessioned2020-06-01T15:52:40Z-
dc.date.available2020-06-01T15:52:40Z-
dc.date.issued2018-
dc.identifier.issn1542-3980-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2790-
dc.description.abstractAn adele α is an infinite sequence α = (α∞, α2, . . . , αp, . . . , ), where α∞ ∈ R, αp ∈ Qp, and for all but a finite set Pfin of primes p, αp ∈ Zp. In this article we present two logics to formalize reasoning with adelicvalued function μ, such that for every event A, (μ(A))1 is a real valued probability, while for i ≥ 2 each coordinate (μ(A))i represents a probability in an appropriate field Qp. We describe the corresponding class of models that combine properties of the usual Kripke models and padic probabilities, and give sound and complete infinite axiomatic systems. First logic, denoted by LAZp allows only finite conjunctions and disjunctions which implies some syntactical constrains, but decidability of this logic is proved. On the other hand, the language of the logic Lw1,AZp, admits countable conjunctions and therefore ensures improved expressivity.en_US
dc.publisherOld City Publishingen_US
dc.relation.ispartofJournal of Multiple-Valued Logic and Soft Computingen_US
dc.subjectAdelic probability | Completeness theorem | Uncertaintyen_US
dc.titleAdelic uncertainty logicen_US
dc.typeArticleen_US
dc.relation.firstpage29-
dc.relation.lastpage78-
dc.relation.issue1-
dc.relation.volume30-
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-9771-1196-
Show simple item record

Page view(s)

29
checked on Dec 22, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.