DC FieldValueLanguage
dc.contributor.authorFarah, Ilijasen_US
dc.contributor.authorKetchersid, Richarden_US
dc.contributor.authorLarson, Paulen_US
dc.contributor.authorMagidor, Menachemen_US
dc.date.accessioned2020-05-27T16:36:59Z-
dc.date.available2020-05-27T16:36:59Z-
dc.date.issued2008-
dc.identifier.isbn978-981-279-654-7-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2788-
dc.description.abstractUsing ⋄ and large cardinals we extend results of Magidor—Malitz and Farah—Larson to obtain models correct for the existence of uncountable homogeneous sets for finite-dimensional partitions and universally Baire sets. Furthermore, we show that the constructions in this paper and its predecessor can be modified to produce a family of 2ω1-many such models so that no two have a stationary, costationary subset of ω1 in common. Finally, we extend a result of Steel to show that trees on reals of height ω1 which are coded by universally Baire sets have either an uncountable path or an absolute impediment preventing one.en_US
dc.publisherWorld Scientificen_US
dc.relation.ispartofComputational Prospects of Infinity Part II : Presented Talks-
dc.titleABSOLUTENESS FOR UNIVERSALLY BAIRE SETS AND THE UNCOUNTABLE IIen_US
dc.typeBook Chapteren_US
dc.identifier.doi10.1142/9789812796554_0009-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage163-
dc.relation.lastpage192-
dc.relation.volume15-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeBook Chapter-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-7703-6931-
Show simple item record

Page view(s)

14
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.