DC FieldValueLanguage
dc.contributor.authorDolinka, Igoren
dc.contributor.authorĐurđev, Ivanaen
dc.contributor.authorEast, Jamesen
dc.contributor.authorHonyam, Preeyanuchen
dc.contributor.authorSangkhanan, Kritsadaen
dc.contributor.authorSanwong, Jintanaen
dc.contributor.authorSommanee, Woracheaden
dc.date.accessioned2020-05-22T10:49:31Z-
dc.date.available2020-05-22T10:49:31Z-
dc.date.issued2018-09-01en
dc.identifier.issn0002-5240en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2784-
dc.description.abstractFix sets X and Y, and write PTXY for the set of all partial functions X→ Y. Fix a partial function a: Y→ X, and define the operation ⋆ a on PTXY by f⋆ ag= fag for f, g∈ PTXY. The sandwich semigroup(PTXY, ⋆ a) is denoted PTXYa. We apply general results from Part I to thoroughly describe the structural and combinatorial properties of PTXYa, as well as its regular and idempotent-generated subsemigroups, Reg(PTXYa) and E(PTXYa). After describing regularity, stability and Green’s relations and preorders, we exhibit Reg(PTXYa) as a pullback product of certain regular subsemigroups of the (non-sandwich) partial transformation semigroups PTX and PTY, and as a kind of “inflation” of PTA, where A is the image of the sandwich element a. We also calculate the rank (minimal size of a generating set) and, where appropriate, the idempotent rank (minimal size of an idempotent generating set) of PTXYa, Reg(PTXYa) and E(PTXYa). The same program is also carried out for sandwich semigroups of totally defined functions and for injective partial functions. Several corollaries are obtained for various (non-sandwich) semigroups of (partial) transformations with restricted image, domain and/or kernel.en
dc.publisherSpringer Link-
dc.relationNumerical Linear Algebra and Discrete Structures-
dc.relationAlgebraic, logical and combinatorial methods with applications in theoretical computer science-
dc.relation.ispartofAlgebra Universalisen
dc.subjectCategories | Idempotent rank | Mid-identities | Partial semigroups | Rank | Sandwich semigroups | Transformation semigroupsen
dc.titleSandwich semigroups in locally small categories II: transformationsen
dc.typeArticleen
dc.identifier.doi10.1007/s00012-018-0539-3en
dc.identifier.scopus2-s2.0-85052376241en
dc.relation.issue3en
dc.relation.volume79en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.funderNSF-
crisitem.project.fundingProgramDirectorate for Computer & Information Science & Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740184-
crisitem.author.orcid0000-0001-8808-375X-
Show simple item record

SCOPUSTM   
Citations

11
checked on Nov 25, 2024

Page view(s)

16
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.