DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dolinka, Igor | en |
dc.contributor.author | Đurđev, Ivana | en |
dc.contributor.author | East, James | en |
dc.contributor.author | Honyam, Preeyanuch | en |
dc.contributor.author | Sangkhanan, Kritsada | en |
dc.contributor.author | Sanwong, Jintana | en |
dc.contributor.author | Sommanee, Worachead | en |
dc.date.accessioned | 2020-05-22T10:49:31Z | - |
dc.date.available | 2020-05-22T10:49:31Z | - |
dc.date.issued | 2018-09-01 | en |
dc.identifier.issn | 0002-5240 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2784 | - |
dc.description.abstract | Fix sets X and Y, and write PTXY for the set of all partial functions X→ Y. Fix a partial function a: Y→ X, and define the operation ⋆ a on PTXY by f⋆ ag= fag for f, g∈ PTXY. The sandwich semigroup(PTXY, ⋆ a) is denoted PTXYa. We apply general results from Part I to thoroughly describe the structural and combinatorial properties of PTXYa, as well as its regular and idempotent-generated subsemigroups, Reg(PTXYa) and E(PTXYa). After describing regularity, stability and Green’s relations and preorders, we exhibit Reg(PTXYa) as a pullback product of certain regular subsemigroups of the (non-sandwich) partial transformation semigroups PTX and PTY, and as a kind of “inflation” of PTA, where A is the image of the sandwich element a. We also calculate the rank (minimal size of a generating set) and, where appropriate, the idempotent rank (minimal size of an idempotent generating set) of PTXYa, Reg(PTXYa) and E(PTXYa). The same program is also carried out for sandwich semigroups of totally defined functions and for injective partial functions. Several corollaries are obtained for various (non-sandwich) semigroups of (partial) transformations with restricted image, domain and/or kernel. | en |
dc.publisher | Springer Link | - |
dc.relation | Numerical Linear Algebra and Discrete Structures | - |
dc.relation | Algebraic, logical and combinatorial methods with applications in theoretical computer science | - |
dc.relation.ispartof | Algebra Universalis | en |
dc.subject | Categories | Idempotent rank | Mid-identities | Partial semigroups | Rank | Sandwich semigroups | Transformation semigroups | en |
dc.title | Sandwich semigroups in locally small categories II: transformations | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s00012-018-0539-3 | en |
dc.identifier.scopus | 2-s2.0-85052376241 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 79 | en |
dc.description.rank | M22 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.project.funder | NSF | - |
crisitem.project.fundingProgram | Directorate for Computer & Information Science & Engineering | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740184 | - |
crisitem.author.orcid | 0000-0001-8808-375X | - |
SCOPUSTM
Citations
11
checked on Nov 25, 2024
Page view(s)
16
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.