DC Field | Value | Language |
---|---|---|
dc.contributor.author | Curien, Pierre-Louis | en_US |
dc.contributor.author | Obradović, Jovana | en_US |
dc.date.accessioned | 2020-05-19T12:06:10Z | - |
dc.date.available | 2020-05-19T12:06:10Z | - |
dc.date.issued | 2017-05-24 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2774 | - |
dc.description.abstract | We propose a λ-calculus-style formal language, called the µ-syntax, as a lightweight representation of the structure of cyclic operads. We illustrate the rewriting methods behind the formalism by giving a complete step-by-step proof of the equivalence between the unbiased and biased definitions of cyclic operads. | en_US |
dc.publisher | Department of Mathematics Macquarie University | en_US |
dc.relation.ispartof | Higher Structures | - |
dc.subject | operad | cyclic operad | unrooted trees | syntax | rewriting system | formalisation | en_US |
dc.title | A formal language for cyclic operads | en_US |
dc.type | Article | en_US |
dc.relation.issn | 2209-0606 | en_US |
dc.relation.firstpage | 22 | - |
dc.relation.lastpage | 55 | - |
dc.relation.issue | 1 | - |
dc.relation.volume | 1 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0001-7407-4668 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.