DC FieldValueLanguage
dc.contributor.authorTanović, Predragen
dc.date.accessioned2020-05-19T09:43:40Z-
dc.date.available2020-05-19T09:43:40Z-
dc.date.issued2007-12-01en
dc.identifier.issn0350-1302en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2764-
dc.description.abstractAn infinite first-order structure is minimal if its each definable subset is either finite or co-finite. We formulate three questions concerning order properties of minimal structures which are motivated by Pillay's Conjecture (stating that a countable first-order structure must have infinitely many countable, pairwise non-isomorphic elementary extensions).en
dc.publisherMathematical Institute of the SASA-
dc.relation.ispartofPublications de l'Institut Mathematiqueen
dc.titleSome questions concerning minimal structuresen
dc.typeArticleen
dc.identifier.doi10.2298/PIM0796079Ten
dc.identifier.scopus2-s2.0-51549109526en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage79en
dc.relation.lastpage83en
dc.relation.issue96en
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptMathematics-
crisitem.author.orcid0000-0003-0307-7508-
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 20, 2024

Page view(s)

12
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.