| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Tanović, Predrag | en |
| dc.date.accessioned | 2020-05-19T09:43:40Z | - |
| dc.date.available | 2020-05-19T09:43:40Z | - |
| dc.date.issued | 2007-12-01 | en |
| dc.identifier.issn | 0350-1302 | en |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2764 | - |
| dc.description.abstract | An infinite first-order structure is minimal if its each definable subset is either finite or co-finite. We formulate three questions concerning order properties of minimal structures which are motivated by Pillay's Conjecture (stating that a countable first-order structure must have infinitely many countable, pairwise non-isomorphic elementary extensions). | en |
| dc.publisher | Mathematical Institute of the SASA | - |
| dc.relation.ispartof | Publications de l'Institut Mathematique | en |
| dc.title | Some questions concerning minimal structures | en |
| dc.type | Article | en |
| dc.identifier.doi | 10.2298/PIM0796079T | en |
| dc.identifier.scopus | 2-s2.0-51549109526 | en |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
| dc.relation.firstpage | 79 | en |
| dc.relation.lastpage | 83 | en |
| dc.relation.issue | 96 | en |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.fulltext | No Fulltext | - |
| item.openairetype | Article | - |
| item.grantfulltext | none | - |
| crisitem.author.dept | Mathematics | - |
| crisitem.author.orcid | 0000-0003-0307-7508 | - |
SCOPUSTM
Citations
1
checked on Nov 24, 2025
Page view(s)
42
checked on Nov 26, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.