DC FieldValueLanguage
dc.contributor.authorTanović, Predragen
dc.date.accessioned2020-05-19T09:43:39Z-
dc.date.available2020-05-19T09:43:39Z-
dc.date.issued2013-11-01en
dc.identifier.issn0933-5846en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2757-
dc.description.abstractLet T be a complete, superstable theory with fewer than 2א0 countable models. Assuming that generic types of infinite, simple groups definable in Teq are sufficiently non-isolated we prove that ωω is the strict upper bound for the Lascar rank of T.en
dc.publisherSpringer Link-
dc.relation.ispartofArchive for Mathematical Logicen
dc.subjectBinding group | Lascar's rank | NENI type | Stable group | Superstable theoryen
dc.titleSimple groups and the number of countable modelsen
dc.typeArticleen
dc.identifier.doi10.1007/s00153-013-0343-xen
dc.identifier.scopus2-s2.0-84885610390en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage779en
dc.relation.lastpage791en
dc.relation.issue7-8en
dc.relation.volume52en
dc.description.rankM23-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptMathematics-
crisitem.author.orcid0000-0003-0307-7508-
Show simple item record

Page view(s)

26
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.