DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tanović, Predrag | en |
dc.date.accessioned | 2020-05-19T09:43:39Z | - |
dc.date.available | 2020-05-19T09:43:39Z | - |
dc.date.issued | 2013-11-01 | en |
dc.identifier.issn | 0933-5846 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2757 | - |
dc.description.abstract | Let T be a complete, superstable theory with fewer than 2א0 countable models. Assuming that generic types of infinite, simple groups definable in Teq are sufficiently non-isolated we prove that ωω is the strict upper bound for the Lascar rank of T. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Archive for Mathematical Logic | en |
dc.subject | Binding group | Lascar's rank | NENI type | Stable group | Superstable theory | en |
dc.title | Simple groups and the number of countable models | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s00153-013-0343-x | en |
dc.identifier.scopus | 2-s2.0-84885610390 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 779 | en |
dc.relation.lastpage | 791 | en |
dc.relation.issue | 7-8 | en |
dc.relation.volume | 52 | en |
dc.description.rank | M23 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | Mathematics | - |
crisitem.author.orcid | 0000-0003-0307-7508 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.