DC FieldValueLanguage
dc.contributor.authorJojić, Duškoen
dc.contributor.authorMarzantowicz, Wacławen
dc.contributor.authorVrećica, Sinišaen
dc.contributor.authorŽivaljević, Radeen
dc.date.accessioned2020-04-12T18:03:54Z-
dc.date.available2020-04-12T18:03:54Z-
dc.date.issued2020-06-01en
dc.identifier.issn1661-7738en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/273-
dc.description.abstractThe partition invariant π(K) of a simplicial complex K⊆ 2 [m] is the minimum integer ν, such that for each partition A1⊎ ⋯ ⊎ Aν= [m] of [m], at least one of the sets Ai is in K. A complex K is r-unavoidable if π(K) ≤ r. We say that a complex K is almost r-non-embeddable in Rd if, for each continuous map f: | K| → Rd, there exist r vertex disjoint faces σ1, ⋯ , σr of | K| , such that f(σ1) ∩ ⋯ ∩ f(σr) ≠ ∅. One of our central observations (Theorem 2.1), summarizing and extending results of Schild et al. is that interesting examples of (almost) r-non-embeddable complexes can be found among the joins K= K1∗ ⋯ ∗ Ks of r-unavoidable complexes.en
dc.publisherSpringer Link-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relationTopology, geometry and global analysis on manifolds and discrete structures-
dc.relation.ispartofJournal of Fixed Point Theory and Applicationsen
dc.subjectequivariant index theory | Partition invariant | unavoidable complexesen
dc.titleUnavoidable complexes, via an elementary equivariant index theoryen
dc.typeArticleen
dc.identifier.doi10.1007/s11784-020-0763-2en
dc.identifier.scopus2-s2.0-85082102755en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.issue2en
dc.relation.volume22en
dc.description.rankM21a-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0001-9801-8839-
crisitem.project.funderMESTD-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174034-
Show simple item record

SCOPUSTM   
Citations

1
checked on Jun 21, 2024

Page view(s)

80
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.