DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jojić, Duško | en |
dc.contributor.author | Marzantowicz, Wacław | en |
dc.contributor.author | Vrećica, Siniša | en |
dc.contributor.author | Živaljević, Rade | en |
dc.date.accessioned | 2020-04-12T18:03:54Z | - |
dc.date.available | 2020-04-12T18:03:54Z | - |
dc.date.issued | 2020-06-01 | en |
dc.identifier.issn | 1661-7738 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/273 | - |
dc.description.abstract | The partition invariant π(K) of a simplicial complex K⊆ 2 [m] is the minimum integer ν, such that for each partition A1⊎ ⋯ ⊎ Aν= [m] of [m], at least one of the sets Ai is in K. A complex K is r-unavoidable if π(K) ≤ r. We say that a complex K is almost r-non-embeddable in Rd if, for each continuous map f: | K| → Rd, there exist r vertex disjoint faces σ1, ⋯ , σr of | K| , such that f(σ1) ∩ ⋯ ∩ f(σr) ≠ ∅. One of our central observations (Theorem 2.1), summarizing and extending results of Schild et al. is that interesting examples of (almost) r-non-embeddable complexes can be found among the joins K= K1∗ ⋯ ∗ Ks of r-unavoidable complexes. | en |
dc.publisher | Springer Link | - |
dc.relation | Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems | - |
dc.relation | Topology, geometry and global analysis on manifolds and discrete structures | - |
dc.relation.ispartof | Journal of Fixed Point Theory and Applications | en |
dc.subject | equivariant index theory | Partition invariant | unavoidable complexes | en |
dc.title | Unavoidable complexes, via an elementary equivariant index theory | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s11784-020-0763-2 | en |
dc.identifier.scopus | 2-s2.0-85082102755 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.issue | 2 | en |
dc.relation.volume | 22 | en |
dc.description.rank | M21a | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.project.funder | MESTD | - |
crisitem.project.fundingProgram | Basic Research (BR or ON) | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174034 | - |
crisitem.author.orcid | 0000-0001-9801-8839 | - |
SCOPUSTM
Citations
1
checked on Nov 23, 2024
Page view(s)
30
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.