DC Field | Value | Language |
---|---|---|
dc.contributor.author | Curien, Pierre Louis | en |
dc.contributor.author | Obradović, Jovana | en |
dc.contributor.author | Ivanović, Jelena | en |
dc.date.accessioned | 2020-05-18T13:06:57Z | - |
dc.date.available | 2020-05-18T13:06:57Z | - |
dc.date.issued | 2019-03-07 | en |
dc.identifier.issn | 2193-8407 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2739 | - |
dc.description.abstract | This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to permutohedra (in any finite dimension). This interval was further stretched by Petrić to allow truncations of faces that are themselves obtained by truncations. Our notation applies to all these polytopes. As an illustration, we detail the case of Petrić’s permutohedron-based associahedra. As an application, we present a criterion for determining whether edges of polytopes associated with the coherences of categorified operads correspond to sequential, or to parallel associativity. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Journal of Homotopy and Related Structures | en |
dc.subject | Categorification | Coherence | Operads | Polytopes | en |
dc.title | Syntactic aspects of hypergraph polytopes | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s40062-018-0211-9 | en |
dc.identifier.scopus | 2-s2.0-85061675245 | en |
dc.relation.firstpage | 235 | en |
dc.relation.lastpage | 279 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 14 | en |
dc.description.rank | M23 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0001-7407-4668 | - |
SCOPUSTM
Citations
7
checked on Apr 1, 2025
Page view(s)
29
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.