DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren_US
dc.date.accessioned2020-05-18T13:03:44Z-
dc.date.available2020-05-18T13:03:44Z-
dc.date.issued2001-01-01-
dc.identifier.issn0951-7715en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2731-
dc.description.abstractWe consider non-holonomic geodesic flows of left-invariant metrics and left-invariant non-integrable distributions on compact connected Lie groups. The equations of geodesic flows are reduced to the Euler-Poincaré-Suslov equations on the corresponding Lie algebras. The Poisson and symplectic structures give rise to various algebraic constructions of the integrable Hamiltonian systems. On the other hand, non-holonomic systems are not Hamiltonian and the integration methods for non-holonomic systems are much less developed. In this paper, using chains of subalgebras, we give constructions that lead to a large set of first integrals and to integrable cases of the Euler-Poincaré-Suslov equations. Furthermore, we give examples of non-holonomic geodesic flows that can be seen as a restriction of integrable sub-Riemannian geodesic flows.en
dc.publisherIOP Science-
dc.relation.ispartofNonlinearityen
dc.titleGeometry and integrability of Euler-Poincaré-Suslov equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/0951-7715/14/6/308-
dc.identifier.scopus2-s2.0-0035511557-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage1555en
dc.relation.lastpage1567en
dc.relation.issue6en
dc.relation.volume14en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

18
checked on Nov 19, 2024

Page view(s)

15
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.