DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren
dc.date.accessioned2020-05-18T13:03:44Z-
dc.date.available2020-05-18T13:03:44Z-
dc.date.issued2002-01-01en
dc.identifier.issn0377-9017en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2730-
dc.description.abstractSuppose we are given a compact Riemannian manifold (Q, g) with a completely integrable geodesic flow. Let G be a compact connected Lie group acting freely on Q by isometrics. The natural question arises: will the geodesic flow on Q/G equipped with the submersion metric be integrable? Under one natural assumption, we prove that the answer is affirmative. New examples of manifolds with completely integrable geodesic flows are obtained.en
dc.publisherSpringer Link-
dc.relationSerbian Ministry of Science and Technology, Project 1643 – Geometry and Topology of Manifolds and Integrable Dynamical Systems-
dc.relation.ispartofLetters in Mathematical Physicsen
dc.subjectIntegrable geodesic flows | Noncommutative integrability | Symplectic reductionen
dc.titleOn the integrability of geodesic flows of submersion metricsen
dc.typeArticleen
dc.identifier.doi10.1023/A:1020234130071en
dc.identifier.scopus2-s2.0-0042315360en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage29en
dc.relation.lastpage39en
dc.relation.issue1en
dc.relation.volume61en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 19, 2024

Page view(s)

13
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.