DC FieldValueLanguage
dc.contributor.authorBolsinov, Alexeyen
dc.contributor.authorJovanović, Božidaren
dc.date.accessioned2020-05-18T13:03:44Z-
dc.date.available2020-05-18T13:03:44Z-
dc.date.issued2003-01-01en
dc.identifier.issn0232-704Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2728-
dc.description.abstractThe purpose of this paper is to discuss the relationship between commutative and noncommutative integrability of Hamiltonian systems and to construct new examples of integrable geodesic flows on Riemannian manifolds. In particular, we prove that the geodesic flow of the bi-invariant metric on any bi-quotient of a compact Lie group is integrable in the noncommutative sense by means of polynomial integrals, and therefore, in the classical commutative sense by means of C∞-smooth integrals.en
dc.publisherSpringer Link-
dc.relationRussian Fund for Fundamental Research (grants 02-01-00998 and 00-15-99272)-
dc.relationSerbian Ministry of Science and Technology, Project 1643 (Geometry and Topology of Manifolds and Integrable Dynamical Systems)-
dc.relation.ispartofAnnals of Global Analysis and Geometryen
dc.subjectGeodesic flows | Hamiltonian action of a Lie group | Integrable Hamiltonian systems | Noncommutative integrabilityen
dc.titleNoncommutative Integrability, Moment Map and Geodesic Flowsen
dc.typeArticleen
dc.identifier.doi10.1023/A:1023023300665en
dc.identifier.scopus2-s2.0-0037259480en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage305en
dc.relation.lastpage322en
dc.relation.issue4en
dc.relation.volume23en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

52
checked on Dec 26, 2024

Page view(s)

20
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.