DC FieldValueLanguage
dc.contributor.authorFedorov, Yurien
dc.contributor.authorJovanović, Božidaren
dc.date.accessioned2020-05-18T13:03:43Z-
dc.date.available2020-05-18T13:03:43Z-
dc.date.issued2006-01-01en
dc.identifier.issn0377-9017en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2724-
dc.description.abstractWe show that the Suslov nonholonomic rigid body problem studied in by Fedorov and Kozlov (Am. Math. Soc. Transl. Ser. 2 168:141-171, 1995), Jovanovic (Reg. Chaot. Dyn. 8(1):125-132, 2005), and Zenkov and Bloch (J. Geom. Phys. 34 (2):121-136, 2000) can be regarded almost everywhere as a generalized Chaplygin system. Furthermore, this provides a new example of a multidimensional nonholonomic system which can be reduced to a Hamiltonian form by means of Chaplygin reducing multiplier. Since we deal with Chaplygin systems in the local sense, the invariant manifolds of the integrable examples are not necessary tori.en
dc.publisherSpringer Link-
dc.relationSpanish Ministry of Science and Technology, Grant BFM 2003-09504-C02-02-
dc.relationSerbian Ministry of Science, Project “Geometry and Topology of Manifolds and Integrable Dynamical Systems”-
dc.relation.ispartofLetters in Mathematical Physicsen
dc.subjectChaplygin reducing multiplier | Integrable nonholonomic systems | Suslov problem | Topology of invariant manifoldsen
dc.titleQuasi-Chaplygin systems and nonholonimic rigid body dynamicsen
dc.typeArticleen
dc.identifier.doi10.1007/s11005-006-0069-3en
dc.identifier.scopus2-s2.0-33646693177en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage215en
dc.relation.lastpage230en
dc.relation.issue2-3en
dc.relation.volume76en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

18
checked on Jan 13, 2025

Page view(s)

14
checked on Jan 13, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.