DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren
dc.date.accessioned2020-05-18T13:03:43Z-
dc.date.available2020-05-18T13:03:43Z-
dc.date.issued2007-02-01en
dc.identifier.issn0951-7715en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2722-
dc.description.abstractWe study reductions of the Hamiltonian flows restricted to their invariant submanifolds. As examples, we consider partial Lagrange-Routh reductions of the natural mechanical systems such as geodesic flows on compact Lie groups and n-dimensional variants of the classical Hess-Appel'rot case of a heavy rigid body motion about a fixed point.en
dc.publisherIOP Science-
dc.relation.ispartofNonlinearityen
dc.titlePartial reductions of Hamiltonian flows and Hess-Appel'rot systems on SO(n)en
dc.typeArticleen
dc.identifier.doi10.1088/0951-7715/20/2/001en
dc.identifier.scopus2-s2.0-33947654859en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage221en
dc.relation.lastpage240en
dc.relation.issue2en
dc.relation.volume20en
dc.description.rankM21-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

6
checked on Apr 2, 2025

Page view(s)

37
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.