DC FieldValueLanguage
dc.contributor.authorBolsinov, Alexeyen_US
dc.contributor.authorJovanović, Božidaren_US
dc.date.accessioned2020-05-18T13:03:43Z-
dc.date.available2020-05-18T13:03:43Z-
dc.date.issued2008-01-01-
dc.identifier.issn0010-2571en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2720-
dc.description.abstractWe consider magnetic geodesic flows of the normal metrics on a class of homogeneous spaces, in particular adjoint orbits of compact Lie groups. We give the proof of the noncommutative integrability of flows and show, in addition, for the case of adjoint orbits, the usual Liouville integrability by means of analytic integrals. We also consider the potential systems on adjoint orbits, which are generalizations of the magnetic spherical pendulum. The complete integrability of such system is proved for an arbitrary adjoint orbit of a compact semisimple Lie group.en
dc.publisherEuropean Mathematical Society-
dc.relationSerbian Ministry of Science, Project 144014 “Geometry and Topology of Manifolds and Integrable Dynamical Systems”-
dc.relation.ispartofCommentarii Mathematici Helveticien
dc.subjectCompatible poisson brackets | Magnetic flows | Non-commutative integrabilityen
dc.titleMagnetic flows on homogeneous spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.4171/CMH/139-
dc.identifier.scopus2-s2.0-47649092991-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage679en
dc.relation.lastpage700en
dc.relation.issue3en
dc.relation.volume83en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

22
checked on Dec 26, 2024

Page view(s)

13
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.