DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bolsinov, Alexey | en_US |
dc.contributor.author | Jovanović, Božidar | en_US |
dc.date.accessioned | 2020-05-18T13:03:43Z | - |
dc.date.available | 2020-05-18T13:03:43Z | - |
dc.date.issued | 2008-01-01 | - |
dc.identifier.issn | 0010-2571 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2720 | - |
dc.description.abstract | We consider magnetic geodesic flows of the normal metrics on a class of homogeneous spaces, in particular adjoint orbits of compact Lie groups. We give the proof of the noncommutative integrability of flows and show, in addition, for the case of adjoint orbits, the usual Liouville integrability by means of analytic integrals. We also consider the potential systems on adjoint orbits, which are generalizations of the magnetic spherical pendulum. The complete integrability of such system is proved for an arbitrary adjoint orbit of a compact semisimple Lie group. | en |
dc.publisher | European Mathematical Society | - |
dc.relation | Serbian Ministry of Science, Project 144014 “Geometry and Topology of Manifolds and Integrable Dynamical Systems” | - |
dc.relation.ispartof | Commentarii Mathematici Helvetici | en |
dc.subject | Compatible poisson brackets | Magnetic flows | Non-commutative integrability | en |
dc.title | Magnetic flows on homogeneous spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.4171/CMH/139 | - |
dc.identifier.scopus | 2-s2.0-47649092991 | - |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 679 | en |
dc.relation.lastpage | 700 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 83 | en |
dc.description.rank | M21 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-3393-4323 | - |
SCOPUSTM
Citations
22
checked on Dec 26, 2024
Page view(s)
13
checked on Dec 27, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.