DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren
dc.date.accessioned2020-05-18T13:03:43Z-
dc.date.available2020-05-18T13:03:43Z-
dc.date.issued2008-12-01en
dc.identifier.issn0350-1302en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2719-
dc.description.abstractThis is a survey on finite-dimensional integrable dynamical systems related to Hamiltonian G-actions. Within a framework of noncommutative integrability we study integrability of G-invariant systems, collective motions and reduced integrability. We also consider reductions of the Hamiltonian flows restricted to their invariant submanifolds generalizing classical Hess-Appel'rot case of a heavy rigid body motion.en
dc.publisherMathematical Institute of the SASA-
dc.relationSerbian Ministry of Science, Project 144014 "Geometry and Topology of Manifolds and Integrable Dynamical Systems"-
dc.relation.ispartofPublications de l'Institut Mathematiqueen
dc.titleSymmetries and integrabilityen
dc.typeArticleen
dc.identifier.doi10.2298/PIM0898001Jen
dc.identifier.scopus2-s2.0-76449087984en
dc.relation.firstpage1en
dc.relation.lastpage36en
dc.relation.issue98en
dc.relation.volume83en
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

25
checked on Dec 26, 2024

Page view(s)

13
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.