DC FieldValueLanguage
dc.contributor.authorFedorov, Yurien
dc.contributor.authorJovanović, Božidaren
dc.date.accessioned2020-05-18T13:03:41Z-
dc.date.available2020-05-18T13:03:41Z-
dc.date.issued2012-04-01en
dc.identifier.issn0025-5874en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2708-
dc.description.abstractWe study integrable geodesic flows on Stiefel varieties V n,r = SO(n)/SO(n-r) given by the Euclidean, normal (standard), Manakov-type, and Einstein metrics. We also consider natural generalizations of the Neumann systems on V n,r with the above metrics and proves their integrability in the non-commutative sense by presenting compatible Poisson brackets on (T *V n,r)/SO(r). Various reductions of the latter systems are described, in particular, the generalized Neumann system on an oriented Grassmannian G n,r and on a sphere S n-1 in presence of Yang-Mills fields or a magnetic monopole field. Apart from the known Lax pair for generalized Neumann systems, an alternative (dual) Lax pair is presented, which enables one to formulate a generalization of the Chasles theorem relating the trajectories of the systems and common linear spaces tangent to confocal quadrics. Additionally, several extensions are considered: the generalized Neumann system on the complex Stiefel variety W n,r = U(n)/U(n-r), the matrix analogs of the double and coupled Neumann systems.en
dc.publisherSpringer Link-
dc.relation.ispartofMathematische Zeitschriften
dc.titleGeodesic flows and Neumann systems on Stiefel varieties: Geometry and integrabilityen
dc.typeArticleen
dc.identifier.doi10.1007/s00209-010-0818-yen
dc.identifier.scopus2-s2.0-84858332194en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage659en
dc.relation.lastpage698en
dc.relation.issue3-4en
dc.relation.volume270en
dc.description.rankM21-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

12
checked on Apr 18, 2025

Page view(s)

27
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.