DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren
dc.date.accessioned2020-05-18T13:03:41Z-
dc.date.available2020-05-18T13:03:41Z-
dc.date.issued2013-10-01en
dc.identifier.issn0003-9527en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2705-
dc.description.abstractIn this article, we construct the Lax representations of the geodesic flow, the Jacobi-Rosochatius problem and its perturbations by means of separable polynomial potentials on an ellipsoid. We prove complete integrability in the case of a generic symmetric ellipsoid and describe analogous systems on complex projective spaces. Also, we consider billiards within an ellipsoid under the influence of the Hook and Rosochatius potentials between the impacts. A geometric interpretation of the integrability analogous to the classical Chasles and Poncelet theorems is given.en
dc.publisherSpringer Link-
dc.relation.ispartofArchive for Rational Mechanics and Analysisen
dc.titleThe Jacobi-Rosochatius Problem on an Ellipsoid: The Lax Representations and Billiardsen
dc.typeArticleen
dc.identifier.doi10.1007/s00205-013-0638-4en
dc.identifier.scopus2-s2.0-84879900309en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage101en
dc.relation.lastpage131en
dc.relation.issue1en
dc.relation.volume210en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 19, 2024

Page view(s)

15
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.