DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jovanović, Božidar | en |
dc.date.accessioned | 2020-05-18T13:03:40Z | - |
dc.date.available | 2020-05-18T13:03:40Z | - |
dc.date.issued | 2016-01-01 | en |
dc.identifier.issn | 1450-5584 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2698 | - |
dc.description.abstract | We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaŕe-Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincaŕe-Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular the Kepler problem. Finally, we prove a variant of the theorem on complete (non-commutative) integrability in terms of Noether symmetries of time-dependent Hamiltonian systems. | en |
dc.publisher | Serbian Society for Mechanics | - |
dc.relation | Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems | - |
dc.relation.ispartof | Theoretical and Applied Mechanics | en |
dc.subject | Contact hamiltonin vector fields | Noether theorem | Poincaré-Cartan form | Symmetries | The principle of stationary action | en |
dc.title | Noether symmetries and integrability in time-dependent hamiltonian mechanics | en |
dc.type | Article | en |
dc.identifier.doi | 10.2298/TAM160121009J | en |
dc.identifier.scopus | 2-s2.0-85019590363 | en |
dc.relation.firstpage | 255 | en |
dc.relation.lastpage | 273 | en |
dc.relation.issue | 2 | en |
dc.relation.volume | 43 | en |
dc.description.rank | M24 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-3393-4323 | - |
SCOPUSTM
Citations
11
checked on Dec 26, 2024
Page view(s)
24
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.