DC FieldValueLanguage
dc.contributor.authorGajić, Borislaven
dc.contributor.authorJovanović, Božidaren
dc.date.accessioned2020-05-18T13:03:39Z-
dc.date.available2020-05-18T13:03:39Z-
dc.date.issued2019-01-01en
dc.identifier.issn2658-5324en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2691-
dc.description.abstractWe consider the nonholonomic problem of rolling without slipping and twisting of a balanced ball over a fixed sphere in Rn. By relating the system to a modified LR system, we prove that the problem always has an invariant measure. Moreover, this is a SO(n)-Chaplygin system that reduces to the cotangent bundle T∗Sn-1. We present two integrable cases. The first one is obtained for a special inertia operator that allows the Chaplygin Hamiltonization of the reduced system. In the second case, we consider the rigid body inertia operator Iω = Iω + ωI, I = diag(I1, . , In) with a symmetry I1 = I2 = . = Ir ≠= Ir+1 = Ir+2 = . = In. It is shown that general trajectories are quasi-periodic, while for r ≠= 1, n-1 the Chaplygin reducing multiplier method does not apply.en
dc.publisherInstitute of Computer Science Izhevsk-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relation.ispartofRussian Journal of Nonlinear Dynamicsen
dc.subjectIntegrability | Invariant measure | Nonholonomic Chaplygin systemsen
dc.titleTwo integrable cases of a ball rolling over a sphere in Rnen
dc.typeArticleen
dc.identifier.doi10.20537/ND190405en
dc.identifier.scopus2-s2.0-85084294708en
dc.relation.firstpage457en
dc.relation.lastpage475en
dc.relation.issue4en
dc.relation.volume15en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-1463-0113-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 24, 2024

Page view(s)

18
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.