DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren
dc.date.accessioned2020-05-18T13:03:39Z-
dc.date.available2020-05-18T13:03:39Z-
dc.date.issued2019-01-01en
dc.identifier.issn1450-5584en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2690-
dc.description.abstractIn this note we consider the nonholonomic problem of rolling without slipping and twisting of an n-dimensional balanced ball over a fixed sphere. This is a SO(n)-Chaplygin system with an invariant measure that reduces to the cotangent bundle T* Sn-1. For the rigid body inertia operator Iω = Iω + ωI, I = diag(I1, ..., In) with a symmetry I1 = I2 = ··· = Ir ≠ Ir+1 = Ir+2 = ··· = In, we prove that the reduced system is integrable, general trajectories are quasi-periodic, while for r ≠ 1, n - 1 the Chaplygin reducing multiplier method does not apply.en
dc.publisherSerbian Society of Mechanics-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relation.ispartofTheoretical and Applied Mechanicsen
dc.subjectIntegrability | Invariant measure | Nonholonomic Chaplygin systemsen
dc.titleNote on a ball rolling over a sphere: Integrable Chaplygin system with an invariant measure without Chaplygin hamiltonizationen
dc.typeArticleen
dc.identifier.doi10.2298/TAM190322003Jen
dc.identifier.scopus2-s2.0-85072761492en
dc.relation.firstpage97en
dc.relation.lastpage108en
dc.relation.issue1en
dc.relation.volume46en
dc.description.rankM24-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

9
checked on Mar 31, 2025

Page view(s)

20
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.