DC FieldValueLanguage
dc.contributor.authorCvetković, Dragošen
dc.contributor.authorDavidović, Tatjanaen
dc.contributor.authorIlić, Aleksandaren
dc.contributor.authorSimić, Slobodanen
dc.date.accessioned2020-04-03T08:16:03Z-
dc.date.available2020-04-03T08:16:03Z-
dc.date.issued2010-11-15en
dc.identifier.issn0096-3003en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/268-
dc.description.abstractLet D be the diameter of a graph G and let λ1 be the largest eigenvalue of its (0, 1)-adjacency matrix. We give a proof of the fact that there are exactly 69 non-trivial connected graphs with (D + 1)λ1 ≤ 9. These 69 graphs all have up to 10 vertices and were recently found to be suitable models for small multiprocessor interconnection networks. We also examine the suitability of integral graphs to model multiprocessor interconnection networks, especially with respect to the load balancing problem. In addition, we classify integral graphs with small values of (D + 1)λ1 in connection with the load balancing problem for multiprocessor systems.en
dc.publisherElsevier-
dc.relationTeorija grafova i matematičko programiranje sa primenama u hemiji i tehničkim naukama-
dc.relationMatematički modeli i metode optimizacije sa primenama-
dc.relation.ispartofApplied Mathematics and Computationen
dc.subjectDiameter | Graph spectra | Graph theory | Integral graphs | Multiprocessor interconnection networksen
dc.titleGraphs for small multiprocessor interconnection networksen
dc.typeArticleen
dc.identifier.doi10.1016/j.amc.2010.07.058en
dc.identifier.scopus2-s2.0-77958052473en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.grantno144015-
dc.relation.grantno144007-
dc.relation.firstpage2468en
dc.relation.lastpage2480en
dc.relation.issue6en
dc.relation.volume217en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-9561-5339-
Show simple item record

SCOPUSTM   
Citations

5
checked on Dec 26, 2024

Page view(s)

18
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.