Authors: | Dragović, Vladimir Radnović, Milena |
Affiliations: | Mathematical Institute of the Serbian Academy of Sciences and Arts | Title: | Hyperelliptic Jacobians as billiard algebra of pencils of quadrics: Beyond Poncelet porisms | Journal: | Advances in Mathematics | Volume: | 219 | Issue: | 5 | First page: | 1577 | Last page: | 1607 | Issue Date: | 1-Dec-2008 | Rank: | M21a | ISSN: | 0001-8708 | DOI: | 10.1016/j.aim.2008.06.021 | Abstract: | The thirty years old programme of Griffiths and Harris of understanding higher-dimensional analogues of Poncelet-type problems and synthetic approach to higher genera addition theorems has been settled and completed in this paper. Starting with the observation of the billiard nature of some classical constructions and configurations, we construct the billiard algebra, that is a group structure on the set T of lines simultaneously tangent to d - 1 quadrics from a given confocal family in the d-dimensional Euclidean space. Using this tool, the related results of Reid, Donagi and Knörrer are further developed, realized and simplified. We derive a fundamental property of T: any two lines from this set can be obtained from each other by at most d - 1 billiard reflections at some quadrics from the confocal family. We introduce two hierarchies of notions: s-skew lines in T and s-weak Poncelet trajectories, s = - 1, 0, ..., d - 2. The interrelations between billiard dynamics, linear subspaces of intersections of quadrics and hyperelliptic Jacobians developed in this paper enabled us to obtain higher-dimensional and higher-genera generalizations of several classical genus 1 results: Cayley's theorem, Weyr's theorem, Griffiths-Harris theorem and Darboux theorem. |
Keywords: | Billiard | Cayley's theorem | Closed billiard trajectories | Griffiths-Harris theorem | Hyperelliptic curve | Hyperelliptic Jacobian | Pencils of quadrics | Poncelet theorem | Weyr's theorem | Publisher: | Elsevier | Project: | Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems |
Show full item record
SCOPUSTM
Citations
22
checked on Dec 26, 2024
Page view(s)
18
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.