DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren
dc.contributor.authorRadnović, Milenaen
dc.date.accessioned2020-05-16T17:02:16Z-
dc.date.available2020-05-16T17:02:16Z-
dc.date.issued2010-11-01en
dc.identifier.issn0036-0279en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2661-
dc.description.abstractBilliards inside quadrics are considered as integrable dynamical systems with a rich geometric structure. The two-way interaction between the dynamics of billiards and the geometry of pencils of quadrics in an arbitrary dimension is considered. Several well-known classical and modern genus-1 results are generalized to arbitrary dimension and genus, such as: the Poncelet theorem, the Darboux theorem, the Weyr theorem, and the Griffiths-Harris space theorem. A synthetic approach to higher-genera addition theorems is presented. © 2010 RAS(DoM) and LMS.en
dc.publisherTurpion-
dc.relation.ispartofRussian Mathematical Surveysen
dc.subjectAddition theorems | Hyperelliptic curve | Jacobian variety | Periodic trajectories | Poncelet porism | Poncelet-Darboux gridsen
dc.titleIntegrable billiards and quadricsen
dc.typeOtheren
dc.identifier.doi10.1070/RM2010v065n02ABEH004673en
dc.identifier.scopus2-s2.0-77958554870en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage319en
dc.relation.lastpage379en
dc.relation.issue2en
dc.relation.volume65en
dc.description.rankM23-
item.fulltextNo Fulltext-
item.openairetypeOther-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-0295-4743-
Show simple item record

SCOPUSTM   
Citations

12
checked on Apr 3, 2025

Page view(s)

20
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.