DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren
dc.contributor.authorKukić, Katarinaen
dc.date.accessioned2020-05-16T17:02:14Z-
dc.date.available2020-05-16T17:02:14Z-
dc.date.issued2014-01-01en
dc.identifier.issn0081-5438en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2647-
dc.description.abstractWe use the discriminantly separable polynomials of degree 2 in each of three variables to integrate explicitly the Sokolov case of a rigid body in an ideal fluid and integrable Kirchhoff elasticae in terms of genus 2 theta functions. The integration procedure is a natural generalization of the one used by Kowalevski in her celebrated 1889 paper. The algebraic background for the most important changes of variables in this integration procedure is associated to the structure of the two-valued groups on an elliptic curve. Such two-valued groups have been introduced by V.M. Buchstaber.en
dc.publisherSpringer Link-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relation.ispartofProceedings of the Steklov Institute of Mathematicsen
dc.titleThe Sokolov case, integrable Kirchhoff elasticae, and genus 2 theta functions via discriminantly separable polynomialsen
dc.typeArticleen
dc.identifier.doi10.1134/S0081543814060133en
dc.identifier.scopus2-s2.0-84919825927en
dc.relation.firstpage224en
dc.relation.lastpage239en
dc.relation.issue1en
dc.relation.volume286en
dc.description.rankM23-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-0295-4743-
Show simple item record

SCOPUSTM   
Citations

7
checked on Jul 21, 2024

Page view(s)

24
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.