| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Dragović, Vladimir | en |
| dc.contributor.author | Radnović, Milena | en |
| dc.date.accessioned | 2020-05-16T17:02:13Z | - |
| dc.date.available | 2020-05-16T17:02:13Z | - |
| dc.date.issued | 2015-03-01 | en |
| dc.identifier.issn | 2199-6792 | en |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2640 | - |
| dc.description.abstract | Consider billiard desks composed of two concentric half-circles connected with two edges. We examine billiard trajectories having a fixed circle concentric with the boundary semicircles as the caustic, such that the rotation numbers with respect to the half-circles are ρ1 and ρ2 respectively. Are such billiard trajectories periodic, and what are all possible periods for given ρ1 and ρ2?. | en |
| dc.publisher | Springer Link | - |
| dc.relation | Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems | - |
| dc.relation | Australian Research Council, Grant no. FL120100094 | - |
| dc.relation.ispartof | Arnold Mathematical Journal | en |
| dc.subject | Billiards | Concentric circles | Periodic trajectories | Rotation numbers | en |
| dc.title | Periods of Pseudo-Integrable Billiards | en |
| dc.type | Article | en |
| dc.identifier.doi | 10.1007/s40598-014-0004-0 | en |
| dc.identifier.scopus | 2-s2.0-84929232222 | en |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
| dc.relation.firstpage | 69 | en |
| dc.relation.lastpage | 73 | en |
| dc.relation.issue | 1 | en |
| dc.relation.volume | 1 | en |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.fulltext | No Fulltext | - |
| item.openairetype | Article | - |
| item.grantfulltext | none | - |
| crisitem.author.orcid | 0000-0002-0295-4743 | - |
SCOPUSTM
Citations
14
checked on Nov 24, 2025
Page view(s)
53
checked on Nov 26, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.