DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren
dc.contributor.authorKukić, Katarinaen
dc.date.accessioned2020-05-16T17:02:13Z-
dc.date.available2020-05-16T17:02:13Z-
dc.date.issued2017-01-01en
dc.identifier.issn1450-5584en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2637-
dc.description.abstractThe notion of discriminantly separable polynomials of degree two in each of three variables has been recently introduced and related to a class of integrable dynamical systems. Explicit integration of such systems can be performed in a way similar to Kowalevski's original integration of the Kowalevski top. Here we present the role of discriminantly separable polynomials in integration of yet another well known integrable system, the so-called generalized Kowalevski top - the motion of a heavy rigid body about a fixed point in a double constant field. We present a novel way to obtain the separation variables for this system, based on the discriminantly separable polynomials.en
dc.publisherSerbian Society for Mechanics-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relation.ispartofTheoretical and Applied Mechanicsen
dc.subjectDiscriminantly separable polynomials | Separation variables | The generalized Kowalevski topen
dc.titleDiscriminantly separable polynomials and the generalized Kowalevski topen
dc.typeArticleen
dc.identifier.doi10.2298/TAM170926016Den
dc.identifier.scopus2-s2.0-85038945212en
dc.relation.firstpage229en
dc.relation.lastpage236en
dc.relation.issue2en
dc.relation.volume44en
dc.description.rankM24-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-0295-4743-
Show simple item record

SCOPUSTM   
Citations

4
checked on Dec 26, 2024

Page view(s)

22
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.