DC FieldValueLanguage
dc.contributor.authorGhilezan, Silviaen
dc.date.accessioned2020-05-02T16:42:23Z-
dc.date.available2020-05-02T16:42:23Z-
dc.date.issued1994-01-01en
dc.identifier.isbn978-3-540-58140-6en
dc.identifier.issn0302-9743en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2618-
dc.description.abstractWe discuss some properties of typed lambda calculi which can be related and applyed to the proofs of some properties of the untyped lambda calculus. The strong normalization property of the intersection type assignment system is used in order to prove the finitness of developments property of the untyped lambda calculus in Krivine (1990). Similarly, the strong normalization property of the simply typed lambda calculus can be used for the same reason. Typability in various intersection type assignment systems characterizes tambda terms in normal form, normalizing, solvable and unsolvable terms. Hence, its application in the proof of the Genericity Lemma turns out to be appropriate.en
dc.publisherSpringer Link-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.titleApplication of typed lambda calculi in the untyped lambda calculusen
dc.typeArticleen
dc.relation.conference3rd International Symposium on Logical Foundations of Computer Science, LFCS 1994; St. Petersburg; Russian Federation; 11 July 1994 through 14 July 1994-
dc.identifier.doi10.1007/3-540-58140-5_13-
dc.identifier.scopus2-s2.0-21344498393en
dc.relation.firstpage129en
dc.relation.lastpage139en
dc.relation.volume813 LNCSen
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-2253-8285-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 19, 2024

Page view(s)

19
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.