DC FieldValueLanguage
dc.contributor.authorDezani-Ciancaglini, Mariangiolaen
dc.contributor.authorGhilezan, Silviaen
dc.contributor.authorLikavec, Silviaen
dc.date.accessioned2020-05-02T16:42:22Z-
dc.date.available2020-05-02T16:42:22Z-
dc.date.issued2004-05-28en
dc.identifier.issn0304-3975en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2610-
dc.description.abstractWe construct two inverse limit λ-models which completely characterise sets of terms with similar computational behaviours: the sets of normalising, head normalising, weak head normalising λ-terms, those corresponding to the persistent versions of these notions, and the sets of closable, closable normalising, and closable head normalising λ-terms. More precisely, for each of these sets of terms there is a corresponding element in at least one of the two models such that a term belongs to the set if and only if its interpretation (in a suitable environment) is greater than or equal to that element. We use the finitary logical description of the models, obtained by defining suitable intersection type assignment systems, to prove this.en
dc.publisherElsevier-
dc.relationFET-Global Computing initiative, project DART ST-2001-33477-
dc.relation“Representation of proofs with applications, classification of structures and infinite combinatorics” (of the Ministry of Science, Technology, and Development of Serbia), grant 1630-
dc.relation.ispartofTheoretical Computer Scienceen
dc.subjectIntersection types | Lambda calculus | Models of lambda calculus | Reducibility method | Stone dualitiesen
dc.titleBehavioural inverse limit λ-modelsen
dc.typeArticleen
dc.identifier.doi10.1016/j.tcs.2004.01.023en
dc.identifier.scopus2-s2.0-2442629668en
dc.relation.firstpage49en
dc.relation.lastpage74en
dc.relation.issue1-3en
dc.relation.volume316en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2253-8285-
Show simple item record

SCOPUSTM   
Citations

13
checked on Nov 23, 2024

Page view(s)

17
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.