DC FieldValueLanguage
dc.contributor.authorHerbelin, Hugoen
dc.contributor.authorGhilezan, Silviaen
dc.date.accessioned2020-05-02T16:42:21Z-
dc.date.available2020-05-02T16:42:21Z-
dc.date.issued2008-01-01en
dc.identifier.issn0362-1340en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2602-
dc.description.abstractWe show that a variant of Parigot's λ;μ-calculus, originally due to de Groote and proved to satisfy Böhm's theorem by Saurin, is canonically interpretable as a call-by-name calculus of delimited control. This observation is expressed using Ariola et al's call-by-value calculus of delimited control, an extension of λ;μ-calculus with delimited control known to be equationally equivalent to Danvy and Filinski's calculus with shift and reset. Our main result then is that de Groote and Saurin's variant of λ;μ-calculus is equivalent to a canonical call-by-name variant of Ariola et al's calculus. The rest of the paper is devoted to a comparative study of the call-by-name and call-by-value variants of Ariola et al's calculus, covering in particular the questions of simple typing, operational semantics, and continuation-passing-style semantics. Finally, we discuss the relevance of Ariola et al's calculus as a uniform framework for representing different calculi of delimited continuations, including "lazy" variants such as Sabry's shift and lazy reset calculus.en
dc.publisherAssociation for Computing Machinery-
dc.relation.ispartofACM SIGPLAN Noticesen
dc.subjectBöhm separability | Classical logic | Delimited control | Observational completenessen
dc.titleAn approach to call-by-name delimited continuationsen
dc.typeArticleen
dc.identifier.doi10.1145/1328897.1328484-
dc.identifier.scopus2-s2.0-67650169497en
dc.relation.firstpage383en
dc.relation.lastpage394en
dc.relation.issue1en
dc.relation.volume43en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2253-8285-
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 24, 2024

Page view(s)

19
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.