DC FieldValueLanguage
dc.contributor.authorGhilezan, Silviaen
dc.contributor.authorIvetić, Jelenaen
dc.contributor.authorLescanne, Pierreen
dc.contributor.authorŽunić, Dragišaen
dc.date.accessioned2020-05-02T16:42:20Z-
dc.date.available2020-05-02T16:42:20Z-
dc.date.issued2011-08-01en
dc.identifier.isbn978-3-642-22302-0en
dc.identifier.issn0302-9743en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2595-
dc.description.abstractIn this paper we extend the Curry-Howard correspondence to intuitionistic sequent calculus with explicit structural rules of weakening and contraction. We present a linear term calculus derived from the calculus of Espírito Santo, which captures the computational content of the intuitionistic sequent logic, by adding explicit operators for weakening and contraction. For the proposed calculus we introduce the type assignment system with simple types and prove some operational properties, including the subject reduction and strong normalisation property. We then relate the proposed linear type calculus to the simply typed intuitionistic calculus of Kesner and Lengrand, which handles explicit operators of weakening and contraction in the natural deduction framework.en
dc.publisherSpringer Link-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.titleIntuitionistic sequent-style calculus with explicit structural rulesen
dc.typeConference Paperen
dc.relation.conference8th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2009; Bakuriani; Georgia; 21 September 2009 through 25 September 2009-
dc.identifier.doi10.1007/978-3-642-22303-7_7en
dc.identifier.scopus2-s2.0-79960821899en
dc.relation.firstpage101en
dc.relation.lastpage124en
dc.relation.volume6618 LNAIen
dc.description.rankM33-
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2253-8285-
Show simple item record

SCOPUSTM   
Citations

1
checked on Apr 2, 2025

Page view(s)

25
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.