DC FieldValueLanguage
dc.contributor.authorĐurđevac, Anaen
dc.date.accessioned2020-05-02T16:42:18Z-
dc.date.available2020-05-02T16:42:18Z-
dc.date.issued2017-01-01en
dc.identifier.issn1463-9963en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2572-
dc.description.abstractWe present the analysis of advection-diffusion equations with random coefficients on moving hypersurfaces. We define a weak and a strong material derivative, which account for the spatial movement. Then we define the solution space for these kind of equations, which is the Bochner-type space of random functions defined on a moving domain. We consider both cases, uniform and log-normal distributions of the diffusion coefficient. Under suitable regularity assumptions we prove the existence and uniqueness of weak solutions of the equation under analysis, and also we give some regularity results about the solution.en
dc.publisherEuropean Mathematical Society-
dc.relation.ispartofInterfaces and Free Boundariesen
dc.subjectAdvection-diffusion | Evolving surfaces | Existence | Random coefficients | Uncertainty quantificationen
dc.titleAdvection-diffusion equations with random coefficients on evolving hypersurfacesen
dc.typeArticleen
dc.identifier.doi10.4171/IFB/391en
dc.identifier.scopus2-s2.0-85041621610en
dc.relation.firstpage525en
dc.relation.lastpage552en
dc.relation.issue4en
dc.relation.volume19en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 25, 2024

Page view(s)

12
checked on Nov 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.