DC FieldValueLanguage
dc.contributor.authorHansen, Pierreen
dc.contributor.authorJaumard, Brigitteen
dc.contributor.authorMladenović, Nenaden
dc.date.accessioned2020-05-02T16:42:17Z-
dc.date.available2020-05-02T16:42:17Z-
dc.date.issued1998-01-01en
dc.identifier.issn0176-4268en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2566-
dc.description.abstractClustering with a criterion which minimizes the sum of squared distances to cluster centroids is usually done in a heuristic way. An exact polynomial algorithm, with a complexity in O(N p+1 logN), is proposed for minimum sum of squares hierarchical divisive clustering of points in a p-dimensional space with small p. Empirical complexity is one order of magnitude lower. Data sets with N = 20000 for p = 2, N = 1000 for p = 3, and N = 200 for p = 4 are clustered in a reasonable computing time.-
dc.publisherSpringer Link-
dc.relation.ispartofJournal of Classificationen
dc.titleMinimum sum of squares clustering in a low dimensional spaceen
dc.typeArticleen
dc.identifier.doi10.1007/s003579900019en
dc.identifier.scopus2-s2.0-0032395795en
dc.relation.firstpage37en
dc.relation.lastpage55en
dc.relation.issue1en
dc.relation.volume15en
dc.description.rankM21-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-6655-0409-
Show simple item record

SCOPUSTM   
Citations

40
checked on Apr 2, 2025

Page view(s)

23
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.