DC Field | Value | Language |
---|---|---|
dc.contributor.author | Brimberg, Jack | en |
dc.contributor.author | Hansen, Pierre | en |
dc.contributor.author | Mladenović, Nenad | en |
dc.date.accessioned | 2020-05-02T16:42:16Z | - |
dc.date.available | 2020-05-02T16:42:16Z | - |
dc.date.issued | 2002-01-01 | en |
dc.identifier.issn | 0925-5001 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2557 | - |
dc.description.abstract | Reduction of some classes of global optimization programs to bilinear programs may be done in various ways, and the choice of method clearly influences the ease of solution of the resulting problem. In this note we show how linear equality constraints may be used together with graph theoretic tools to reduce a bilinear program, i.e., eliminate variables from quadratic terms to minimize the number of complicating variables. The method is illustrated on an example. Computer results are reported on known test problems. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Journal of Global Optimization | en |
dc.subject | Bilinear program | Gaussian pivoting | Quadratic program | Reduction | en |
dc.title | A note on reduction of quadratic and bilinear programs with equality constraints | en |
dc.type | Article | en |
dc.identifier.doi | 10.1023/A:1013838625301 | en |
dc.identifier.scopus | 2-s2.0-34247576638 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 39 | en |
dc.relation.lastpage | 47 | en |
dc.relation.issue | 1-4 | en |
dc.relation.volume | 22 | en |
dc.description.rank | M22 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0001-6655-0409 | - |
SCOPUSTM
Citations
6
checked on Nov 23, 2024
Page view(s)
18
checked on Nov 23, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.