DC FieldValueLanguage
dc.contributor.authorPardo, Eduardoen
dc.contributor.authorMladenović, Nenaden
dc.contributor.authorPantrigo, Juanen
dc.contributor.authorDuarte, Abrahamen
dc.date.accessioned2020-05-02T16:42:06Z-
dc.date.available2020-05-02T16:42:06Z-
dc.date.issued2012-12-01en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2488-
dc.description.abstractThe Cutwidth Minimization Problem, also known as the Minimum Cut Linear Arrangement consists of finding an arrangement of the vertices of a graph on a line, in such a way that the maximum number of edges between each pair of consecutive vertices is minimized. This problem has practical applications in VLSI Design, Network Migration and Graph Drawing, among others. In this paper we propose several heuristics based on the Variable Neighbourhood Search methodology to tackle the problem and we compare them with other state-of-the-art methods.en
dc.publisherElsevier-
dc.relation.ispartofElectronic Notes in Discrete Mathematicsen
dc.subjectCutwidth Minimization Problem | Variable Neighbourhood Searchen
dc.titleA Variable Neighbourhood Search approach to the Cutwidth Minimization Problemen
dc.typeArticleen
dc.identifier.doi10.1016/j.endm.2012.10.010en
dc.identifier.scopus2-s2.0-84870257623en
dc.relation.firstpage67en
dc.relation.lastpage74en
dc.relation.volume39en
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-6655-0409-
Show simple item record

SCOPUSTM   
Citations

2
checked on Jan 4, 2025

Page view(s)

17
checked on Jan 5, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.